Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates
نویسندگان
چکیده
Ribonuclease III cleaves double-stranded (ds) structures in bacterial RNAs and participates in diverse RNA maturation and decay pathways. Essential insight on the RNase III mechanism of dsRNA cleavage has been provided by crystallographic studies of the enzyme from the hyperthermophilic bacterium, Aquifex aeolicus. However, the biochemical properties of A. aeolicus (Aa)-RNase III and the reactivity epitopes of its substrates are not known. The catalytic activity of purified recombinant Aa-RNase III exhibits a temperature optimum of ∼70-85°C, with either Mg2+ or Mn2+ supporting efficient catalysis. Small hairpins based on the stem structures associated with the Aquifex 16S and 23S rRNA precursors are cleaved at sites that are consistent with production of the immediate precursors to the mature rRNAs. Substrate reactivity is independent of the distal box sequence, but is strongly dependent on the proximal box sequence. Structural studies have shown that a conserved glutamine (Q157) in the Aa-RNase III dsRNA-binding domain (dsRBD) directly interacts with a proximal box base pair. Aa-RNase III cleavage of the pre-16S substrate is blocked by the Q157A mutation, which reflects a loss of substrate binding affinity. Thus, a highly conserved dsRBD-substrate interaction plays an important role in substrate recognition by bacterial RNase III.
منابع مشابه
Noncatalytic assembly of ribonuclease III with double-stranded RNA.
Ribonuclease III (RNase III) represents a family of double-stranded RNA (dsRNA) endonucleases. The simplest bacterial enzyme contains an endonuclease domain (endoND) and a dsRNA binding domain (dsRBD). RNase III can affect RNA structure and gene expression in either of two ways: as a dsRNA-processing enzyme that cleaves dsRNA, or as a dsRNA binding protein that binds but does not cleave dsRNA. ...
متن کاملNMR structure of the Aquifex aeolicus tmRNA pseudoknot PK1: new insights into the recoding event of the ribosomal trans-translation
The transfer-messenger RNA (tmRNA) pseudoknot PK1 is essential for bacterial trans-translation, a ribosomal rescue mechanism. We report the solution structure of PK1 from Aquifex aeolicus, which despite an unprecedented small number of nucleotides and thus an unprecented compact size, displays a very high thermal stability. Several unusual structural features account for these properties and in...
متن کاملSingle Processing Center Models for Human Dicer and Bacterial RNase III
Dicer is a multidomain ribonuclease that processes double-stranded RNAs (dsRNAs) to 21 nt small interfering RNAs (siRNAs) during RNA interference, and excises microRNAs from precursor hairpins. Dicer contains two domains related to the bacterial dsRNA-specific endonuclease, RNase III, which is known to function as a homodimer. Based on an X-ray structure of the Aquifex aeolicus RNase III, model...
متن کاملStructural and mechanistic characterization of 6S RNA from the hyperthermophilic bacterium Aquifex aeolicus.
Bacterial 6S RNAs competitively inhibit binding of RNA polymerase (RNAP) holoenzymes to DNA promoters, thereby globally regulating transcription. RNAP uses 6S RNA itself as a template to synthesize short transcripts, termed pRNAs (product RNAs). Longer pRNAs (approx. ≥ 10 nt) rearrange the 6S RNA structure and thereby disrupt the 6S RNA:RNAP complex, which enables the enzyme to resume transcrip...
متن کاملStructure-specific tRNA-binding protein from the extreme thermophile Aquifex aeolicus.
The genome of the bacterium Aquifex aeolicus encodes a polypeptide which is related to a small portion of a sequence found in one prokaryotic and two eukaryotic tRNA synthetases. It also is related to a portion of Arc1p, a tRNA-binding protein believed to be important for nuclear trafficking of tRNAs. Here we cloned, expressed and purified the 111 amino acid polypeptide (designated Trbp111) and...
متن کامل